Remnants of Eoarchean continental crust derived from a subducted proto-arc
نویسندگان
چکیده
Eoarchean [3.6 to 4.0 billion years ago (Ga)] tonalite-trondhjemite-granodiorite (TTG) is the major component of Earth's oldest remnant continental crust, thereby holding the key to understanding how continental crust originated and when plate tectonics started in the early Earth. TTGs are mostly generated by partial melting of hydrated mafic rocks at different depths, but whether this requires subduction remains enigmatic. Recent studies show that most Archean TTGs formed at relatively low pressures (≤1.5 GPa) and do not require subduction. We report a suite of newly discovered Eoarchean tonalitic gneisses dated at ~3.7 Ga from the Tarim Craton, northwestern China. These rocks are probably the oldest high-pressure TTGs so far documented worldwide. Thermodynamic and trace element modeling demonstrates that the parent magma may have been generated by water-fluxed partial melting of moderately enriched arc-like basalts at 1.8 to 1.9 GPa and 800° to 830°C, indicating an apparent geothermal gradient (400° to 450°C GPa-1) typical for hot subduction zones. They also locally record geochemical evidence for magma interaction with a mantle wedge. Accordingly, we propose that these high-pressure TTGs were generated by partial melting of a subducted proto-arc during arc accretion. Our model implies that modern-style plate tectonics was operative, at least locally, at ~3.7 Ga and was responsible for generating some of the oldest continental nuclei.
منابع مشابه
Petrological and geodynamical constraints of Chaldoran basaltic rocks, NW of Iran: evidence from geochemical characteristics
Chaldoran area in NW of Iran has Mesozoic oceanic crust basement. The studied rocks of this region can be divided into three groups: ophiolitic gabbros and pillow lavas, ophiolitic volcanoclastics and Eocene lava flows. Ophiolitic mafic rocks show continental volcanic arc natures and Eocene lava flow shows OIB-like nature. During the Mesozoic,the Chaldoran region was situated in the active cont...
متن کاملPostcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction
Findings of coesite and microdiamond in metamorphic rocks of supracrustal protolith led to the recognition of continental subduction to mantle depths. The crust-mantle interaction is expected to take place during subduction of the continental crust beneath the subcontinental lithospheric mantle wedge. This is recorded by postcollisional mafic igneous rocks in the Dabie-Sulu orogenic belt and it...
متن کاملسنگشناسی، ژئوشیمی و سن پرتو سنجی گنبدهای آداکیتی پرسیلیس کمان قارهای نئوژن، جنوب قوچان
Neogene high silica adakitic domes of south Quchan, cropped out in the northern part of the Quchan-Esfarayen Cenozoic magmatic arc (north of Sabzevar ophiolitic and metamorphic belt). In this volcanic belt, magmatic activities has been started since Eocene (about 40 Ma ago) and continued to Plio-Pleistocene (about 2 Ma ago). The ages of volcanic rocks range from Eocene to Plio-Pleistocene from ...
متن کاملActive continental subduction and crustal exhumation: the Taiwan orogeny
It is generally accepted that continental subduction and crustal exhumation play an important role in the evolution of many orogenic belts. A variety of geological evidence suggests that continental crust is occasionally subducted to depths of tens to perhaps 150 km (e.g. Chopin, 1984; Dewey et al., 1993; Matte et al., 1997). Recently, a series of simulations (Chemenda, 1993; Chemenda et al., 1...
متن کاملControls on Tectonic Accretion versus Erosion in Subduction Zones: Implications for the Origin and Recycling of the Continental Crust
[1] Documenting the mass flux through convergent plate margins is important to the understanding of petrogenesis in arc settings and to the origin of the continental crust, since subduction zones are the only major routes by which material extracted from the mantle can be returned to great depths within the Earth. Despite their significance, there has been a tendency to view subduction zones as...
متن کامل